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Systems of highly degenerate ordered or frozen state may exhibit inverse melting �reversible crystallization
upon heating� or inverse freezing �reversible glass transition upon heating�. This phenomenon is reviewed, and
a list of experimental demonstrations and theoretical models is presented. A simple spin model for inverse
melting is introduced and solved analytically for infinite range, constant paramagnetic exchange interaction.
The random exchange analogue of this model yields inverse freezing, as implied by the analytic solution based
on the replica trick. The qualitative features of this system �generalized Blume-Capel spin model� are shown to
resemble a large class of inverse melting phenomena. The appearance of inverse melting is related to an exact
rescaling of one of the interaction parameters that measures the entropy of the system. For the case of almost
degenerate spin states, perturbative expansion is presented, and the first three terms correspond to the empiric
formula for the Flory-Huggins � parameter in the theory of polymer melts. The possible microscopic origin of
this � parameter and the limitations of the Flory-Huggins theory where the state degeneracy is associated with
the different conformations of a single polymer or with the spatial structures of two interacting molecules are
discussed.
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I. INTRODUCTION

Inverse melting is a reversible transition between a liquid
phase at low temperatures to a high-temperature crystalline
phase. This is an unusual and counterintuitive phenomenon
in which isobaric addition of heat causes liquids to crystal-
lize, the reverse of the usual situation. For the opposite pro-
cess of melting a solid to a liquid, which is normally ex-
pected to produce cooling, in inverse melting heat is released
as the solid melts. Clearly, inverse melting happens if, and
only if, the so called “ordered” phase �crystal� admits more
entropy than the “disordered” state; this may occur, e.g., if in
the liquid phase some of the degrees of freedom of the el-
ementary constituents are frozen, and melt in the crystalline
phase.

Speaking about freezing and crystallization, one should
make the distinction between static phenomena, such as
magnetization, degree of phase separation, and crystalline
order �Bragg peaks�, and dynamical aspects, such as the re-
sponse functions, viscosity, ergodicity breakdown, and so on.
While the static features reflect the properties of the “ground
state” �lowest free energy state�, the dynamics is dictated by
the size of the potential barriers among different states. In the
following, cases where the appearance of crystalline order is
correlated with higher response functions will be mentioned,
along with situations where ergodicity breaks down without
the appearance of ordered structure, i.e., glasslike transition.
If such a transition occurs upon temperature increase, we are
speaking about “inverse” glass transition, or inverse freezing,
analogous to inverse melting.

Although rare, real substance examples of inverse melting
phenomena have been found in a wide range of systems, as
well as the formation, upon heating, of solid amorphous or
glassy states. Since the transition that occurs on heating ab-
sorbs heat �as does normal melting�, and the phase in equi-
librium at higher temperatures has higher disorder or en-
tropy, the crystalline or frozen amorphous phase is more

disordered than the liquid phase. In each case, the greater
order of average atomic positions in the crystal has to be
offset by greater disorder in some other characteristic. Thus,
all cases of inverse melting and inverse glass transition ap-
pear to involve a freezing of the center-of-mass location of
the system constituents �molecules, polymers, flux lines�.
The loss of entropy due to this freezing is compensated by
other microscopic degrees of freedom that are coupled to the
center-of-mass position, where localization of the center of
mass increases the amount of such excitations. As a simple
example, one may have in mind a substance that admits
larger molar volume in the crystalline phase than in the liq-
uid phase. Under such a circumstance, it is plausible that the
variational entropy, associated with the thermal oscillations
of molecules around their positions, will be larger in the
crystalline phase, as the phonons become “softer.” It may
happen that this variational entropy growth is larger than the
loss of configurational entropy associated with the frozen
topology of the solid. In such a case, the system crystallizes
upon heating �1�.

The aim of this paper is to survey the literature concern-
ing the subject, to present and discuss an extremely simple
spin model for inverse melting and inverse freezing, a model
that has been recently presented by the authors �2�, and to
extract some general features related to the phenomenon.
The paper is organized as follows. In Sec. II, we discuss the
general characteristics of inverse melting and inverse glass
transition and classify the different possible inverse melting
scenarios. In Sec. III, we survey some real material examples
from the literature, and ascribe them to the different classifi-
cations presented. Section IV is devoted to modeling, where
our simple spin model based on the well known Blume-
Capel �3� model is presented along with previously discussed
models. In Sec. V, we deal with the ordered version of our
“enriched” Blume-Capel model for inverse melting, and in
the next section its disordered version and inverse freezing
are discussed. Section VII deals with the scaling properties
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of the model and we also show how its modification can be
related to the temperature dependence of the interaction pa-
rameter of the Flory-Huggins-like �4,5� theories. Finally,
some general conclusions and remarks are presented.

II. INVERSE MELTING AND INVERSE FREEZING
SCENARIOS

A. Two types of first-order inverse melting

Following Stillinger and Debenedetti �6�, we begin the
discussion of inverse melting with the Clausius-Clapeyron
equation that describes the slope of the melting curve in
first-order transition, e.g., the curve that describes the bound-
ary between a crystal and a liquid in the T-P plane,

dP

dT
=

S�2� − S�1�

V�2� − V�1� , �1�

where P�T� is the temperature-dependent melting pressure, S
and V denote the molar entropies and volumes, and the su-
perscripts 2 and 1 denote the high- and low-temperature
phases, respectively. Alternatively, these will be denoted by l
and s for the liquid and solid phase. As noted first by Tam-
mann �7�, this thermodynamic equation offers schematically
four different types of melting curves as shown in Fig. 1 and
will help to classify the known examples of first-order tran-
sition scenarios. If the liquid-crystal transition is first order,
at least one of S�l�−S�s� and V�l�−V�s� is nonzero at every
point of the curve.

Let us identify the different regimes in this diagram.
“Normal” melting involves an increase in both the entropy
�the system absorbs latent heat� and the molar volume as the
crystal becomes liquid. In that case, both S�2�−S�1� and
V�2�−V�1� are positive, and therefore the slope of the curve is
also positive. In Fig. 1 this is the portion of the curve be-
tween the points C and D. “Anomalous,” or waterlike, melt-
ing happens if the molar volume of the liquid is smaller than
that of the solid, V�2�−V�1� becomes negative, and the slope
of the first-order transition curve is also negative, i.e.,
the melting temperature decreases as pressure increases.
The curve between the points B and C demonstrates this
situation.

The left side of the circle, i.e., the intervals between A and
B and between A and D, are ranges of inverse melting, where
isobaric heating takes the system from its liquid phase into
the crystalline phase. If the transition involves latent heat, for
any inverse melting situation S�s�−S�l��0. For the interval
from A to D, V�s�−V�l� is negative �the solid volume is
smaller than the liquid� while the interval AB exhibits posi-
tive slope, since the solid is less dense than the liquid. Thus,
there are two types of inverse melting, similar to the normal
and anomalous usual melting. We shall denote the former
case as inverse melting of type I, while the “anomalous” case
of larger molar volume in the ordered phase will be denoted
as inverse melting of type II.

B. Order-disorder transition and response functions

As discussed in the Introduction, the “standard” solid-
liquid transition involves both static �symmetry breakdown,
Bragg peaks� and dynamic �diverging viscosity, rapid
changes in the Young modulus, discontinuous susceptibility�
aspects. In general, any of these may take place indepen-
dently. For example, one may find an amorphous system
with diverging �or at least very large� viscosity, like a glass.
On the other hand, the order parameter may take a finite
value but the ordered system is “softer” than the disordered
one, i.e., its response functions are larger, and therefore its
viscosity smaller. In general, we will speak about inverse
melting when a liquid acquires crystalline structure upon
heating, and about inverse freezing if the liquid becomes a
glass �amorphous solid, with higher viscosity or an increase
in other response functions, but no apparent order�. An in-
verse solid-amorphous transition is another situation where
an amorphous rigid material �similar to window glass� re-
versibly crystallizes as its temperature increases.

Although it is natural to associate an “ordered” material
with some sort of local structure, like a crystal, there are also
other order parameters that one may define. In particular,
phase separation of two liquids may be considered as a phase
transition where the order parameter is associated with the
local mixing of the fluids. Phase separation of polymer melts
�4�, for example, depends on the relation between the en-
tropy gain of the mixture versus the energetic advantage of
the separated state. It is well known �8� that some systems of
polymer melts undergo phase separation when the tempera-
ture increases, a phenomenon that, in some sense, is analo-
gous to inverse melting �the “ordered,” separated state is
thermodynamically stable only above some temperature�. In
the Flory-Huggins �4,5� theory of polymer melts, the free
energy contains a temperature-dependent interaction term.
This implies that, to some extent, part of the internal entropy
associated with the possible conformations of a single poly-
mer is “absorbed” into the interaction term to yield an effec-
tive, temperature-dependent interaction. The possible gener-
alizations of this Flory-Huggins procedure for inverse
melting are discussed in Sec. VII.

C. Kinetics of inverse freezing

In any case of a first-order transition between a liquid and
a crystalline phase, the system freezes into a glassy state if

FIG. 1. A sketch of the different melting curves in the T-P plane
resulting from the Clausius-Clapeyron equation. Regions CD and
BC represent normal and “water-like” anomalous melting, respec-
tively, while regions AD and AB represent type I and type II
“anomalous” inverse melting scenarios.
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the cooling is fast enough. The general kinetic description of
this phenomenon is based on the distinction between the
nucleation rate in a supercooled liquid �namely, the rate of
creation of stable nuclei of the crystalline phase� and the
growth rate of a crystal. Both processes are thermally acti-
vated and their rates admit maxima between the melting tem-
perature and T=0. At the melting temperature, the bulk free
energy associated with the two phases is the same, and there
is no driving force toward nucleation, while as the tempera-
ture approaches zero, the kinetics of the system halts due to
the divergence of viscosity �the rate of any thermally acti-
vated process depends on exp�−�E /kBT��. There is a differ-
ence, however, between the locations of these maxima, and
in general one needs a lower temperature to get a reasonable
nucleation rate, since there is a minimal size for a nucleus to
be energetically favorable �the surface tension makes small
nuclei thermodynamically unstable even below the melting
temperature�.

A good glass former liquid is associated, though, with
diminishing overlap between the nucleation and the crystal
growth zone, i.e., at temperatures just below the melting
point there is no nucleation, while at lower temperatures,
nucleation actually takes place but the crystal seeds could not
grow as the viscosity diverges.

This picture yields a simple plausibility argument for in-
verse freezing, i.e., for a liquid that forms glass as it absorbs
heat. Here, there is no decreasing kinetics as the temperature
increases away from the melting point. Accordingly, any ma-
terial that undergoes inverse melting is, generally, a very bad
glass former. Unless some weird situation takes place, it is
not plausible to get a glassy state of matter as a result of fast
heating of a liquid. Accordingly, we suggest that inverse
freezing appears, generically, only in systems with quenched
disorder or, at least, if the glassy state is a true thermody-
namic equilibrium state of the system.

III. EXAMPLES OF INVERSE MELTING AND INVERSE
FREEZING

Let us mention briefly some examples of systems display-
ing inverse melting which have been reported in the pub-
lished literature, classify them as first or second order, type I
or II, and attempt to explain their driving mechanisms
shortly by the different sources of the entropy and volumes
in the different phases involved �see Table I�. It should be
stressed that the following list is by no means complete: a lot
of literature is devoted to the glass-crystal transition under
the name “reentrent” �9�, while the discovery of new systems
is still being reported �10�.

Helium isotopes He3 and He4. Both isotopes display first-
order transition curves that qualitatively resemble the neigh-
borhood of point D in Fig. 1, i.e., inverse melting of negative
slope �type I� �11�. For both isotopes the inverse melting
happens at high pressures �about 25–30 bar� and, of course,
at low temperature �less than 1 K�. There is, however, a dif-
ference in the character of the solid and the liquid phase. For
He4, a superfluid liquid becomes an hcp crystal upon heating
�clearly the entropic gain here involves longitudinal
phonons�. For He3, on the other hand, normal �i.e., nonsu-

perfluid� liquid becomes a bcc crystal. This has to do with
nuclear spin degrees of freedom that are relatively free to
reorient independently in the crystal, thereby increasing its
entropy relative to the liquid.

Metallic alloys. Inverse melting transformations have also
been found in a number of binary alloys based on the early
transition metals Ti, Nb, Zr, and Ta with later transition met-
als from groups V and VI. In inverse melting of alloys, a
metastable supersaturated crystallic alloy transforms poly-
morphously to an amorphous state near the glass transition
temperature upon cooling �12�. For example, metastable bcc
�-TiCr phases with Cr contents between 40% and 65%
which were prepared by mechanical alloying of elemental
powder blends showed a polymorphous transformation of the
bcc alloy into an amorphous phase. Furthermore, it was re-
ported that this transition is reversible, such that the alloy can
be switched back and forth between the amorphous and the
bcc crystalline phase by application of alternating annealing
steps at 600°C and 800°C. From these results and also nu-
merical thermodynamic calculations, it was obtained that at
those temperatures, a thermodynamic driving force must ex-
ist for the amorphization such that the free energy of the
amorphous phase is lower than that of the bcc alloy for those
configurations. The occurrence of inverse melting originates
from a pronounced short-range ordering of the amorphous
phase upon undercooling, which stabilizes the amorphous
phase with respect to the bcc. Thus, although the crystal is
much more topologically, long-range, ordered than the amor-
phous, the amorphous phase admits much more chemical
short-range order and therefore is of lower entropy.

Liquid crystals. An analogue to inverse melting, whose
driving force is similar to the metallic alloys, is provided by
liquid crystals. It was shown that a first-order boundary be-
tween smectic-A and nematic phases of 4-cyano-
4�-octyloxybiphenyl �called 8OCB� looks very much like the
portion A→B→C→D of Fig. 1 �13,14�. The 8OCB liquid
crystal molecule contains both a polar and a nonpolar part, as
lipid bilayers. It consists of a flexible n-octane chain attached
to a relatively rigid 4-cyano-biphenyloxy group. It was
shown �by optical microscopy� that upon heating at a con-
stant pressure, the nematic phase transforms into a smectic-A
phase, and on cooling again, it reversibly transforms back to
the nematic phase. The nematic low-temperature state pos-
sesses just molecular orientational order, while the smectic-A
high-temperature phase possesses both orientational and par-
tial translational order. Long-range attractive electrostatic
forces stabilize layering, while the short-range repulsive in-
teractions stabilize the nematic phase at low temperatures.
Thus, in this material many internal degrees of freedom are
coupled to the orientational and positional order to produce
an inverse melting analogue. In addition, “reentrant”
nematic↔smectic-A transformations were observed in bi-
nary mixtures of analogous molecules. The thermodynamics
of the binary mixtures may involve also an alloylike chemi-
cal short range ordering in the nematic phase. It was pro-
posed �13� that tight but mobile configurations of associated
molecular pairs reduce the entropy of that phase.

Ferroelectricity in Rochelle salt. Rochelle salt
�NaKC4H4O6�4H2O, double sodium potassium tartrate tet-
rahydrate� is a ferroelectric material exhibiting two Curie
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points: one at −18°C and the other at +24°C �15�. This
material is ferroelectric with a monoclinic point group 2 and,
in its nonferroelectric region, its structure belongs to the
orthorhombic point group 222. The higher Curie point is
similar to regular ferroelectric transition, however the lower
point—the point where the spontaneous polarization is lost,
and the system becomes paraelectric �disordered�—is not
trivial, since the crystalline structure above the upper Curie
point and below the lower Curie point is the same. This time
the inverted transition is second order in type. Both the
higher and the lower Curie point go up in temperature at
higher pressure, i.e., dP /dT�0. In the next section, the the-
oretical explanations for this behavior are presented.

Water. The liquid-liquid transition theory for polyamor-
phous materials, i.e., materials that can have more than one
amorphous form, predicts an inverse freezing transition even
for the most known liquid, water. In the hypothesized phase
diagram presented in �16�, below a second critical point with
coordinates T=220 K and P=100 MPa, the liquid phase
separates into two distinct liquid phases: a low-density liquid
�LDL� phase at low pressures and a high-density liquid
�HDL� at high pressures. Between these points, water is a
fluctuating mixture of molecules whose local structures re-
semble the two phases, LDL and HDL. The small region
between 100 and 150 MPa and temperatures between −50
and −100°C exhibits a range of inverse melting where the-
low density amorphous becomes a low-density liquid upon
cooling. Although the region of this hypothetic inverse freez-
ing scenario is not accessible experimentally, it is interesting
to note the possibility of an inverse transition even in the
most familiar and important liquid on earth.

Magnetic films. An inverse transition effect is also found
in ultrathin Fe films that are magnetized perpendicular to the
film plane �17�. The magnetization of these films is striped
domains with opposite perpendicular magnetization. From
scanning electron microscopy it was found that when the
temperature is increased, the low-temperature stripe domain
structure transforms into a more symmetric, labyrinthine
structure. However, at even higher temperatures and before

the loss of magnetic order, a reoccurrence of the less sym-
metric stripe phase is found. The mechanism driving this
transition is topological defects such as dislocations and dis-
clinations. More specifically, knee-bend and bridge instabili-
ties lead to the straightening of the labyrinthine pattern when
the temperature is increased. Thus the increase in topological
disorder drives the transition.

Vortex lines in a disordered high-temperature supercon-
ductor. First-order, type II transition from a glassy to a crys-
talline state was discovered in the lattice formed by magnetic
flux lines in a high-temperature superconductor
Bi2Sr2CaCu2O8 �BSCCO� �18�. The ordered hexagonal lat-
tice has larger entropy than the low-temperature disordered
phase. The explanation suggested is that the transition from
the lattice to the glass phase is driven by pinning of the flux
lines to impurities in the crystal at low temperatures. The
competition between thermal fluctuations and pinning disor-
der leads to inverse melting near the critical point. In this
system, however, the intensive order parameter �bulk magne-
tization� is lower in the crystalline phase, and the response
functions are higher, i.e., the disordered phase is stiffer than
the ordered phase.

“Cold denaturation” of proteins. Most of the proteins de-
naturate, i.e., lose their biologically active, native state, at
high temperatures. Since a protein is a complex object with
many degrees of freedom, its denaturation transition re-
sembles a “true” first-order transition in an infinite system
�19�. In contrast with the “regular” denaturation upon heat-
ing, the protein ribonuclease A displays a reversible “inverse
denaturation” upon cooling �type II inverse melting� at high
pressure �about 4 kbar�. This phenomenon may be explained
on the basis of the internal structure of the protein itself, as
secondary or higher-order structures are lost upon denatur-
ation. A different explanation which has been proposed is the
loss of “low-density water” as the cause for cold denatur-
ation �20�. This has been modeled and found in agreement
with the experimental data. In addition to the study of ribo-
nuclease A, cold denaturation at very high pressures has also
been observed in other biological systems �21�.

TABLE I. Summary of different physical systems that exhibit inverse melting or inverse freezing and of
the transition characteristics.

System
Type of Transition

on Heating
Order of

Transition
Sign of
dP /dT

He3 fluid→bcc I —

He4 superfluid→hcp

Metallic alloys amorphous→bcc I �/�

Liquid crystals nematic→smectic A I �

Rochelle salt paraelectric→ ferroelectric II �

Water liquid→amorphous I �

Superconductivity disordered flux lines→ordered lattice I �

Ribonuclease A protein denatured→ renatured I �

P4MP1 amorphous→solid I �

PMM1 colloids-sticky spheres liquid→glass I �

PEO-PPO-PEO triblock copolymer micellar liquid→bcc I �

methylcellulose liquid→gel I �
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Colloidal systems—PMM1 sticky spheres. A simple model
system which was studied both theoretically and experimen-
tally is a collection of hard spheres in a given volume. Hard-
sphere particles are increasingly caged by their neighbors as
the density increases, and at a critical density the system
becomes nonergodic or glassy. The glass transition in that
case depends only on the filling fraction of the system and is
independent of temperature, as the thermal energy is negli-
gible compared with the repulsion. The addition of short-
range interparticle attraction �stickiness� introduces a new
energy scale, and a corresponding temperature, into the prob-
lem. It was shown that, as temperature decreases, the attrac-
tion first “melts” the “hard-sphere” glass, thus causing an
inverse freezing transition, and then, upon further decrease of
the temperature, a second, qualitatively different, glassy state
is formed due to the attractive interactions. Experimentally
�22� the system consisted of a colloidal system of sterically
stabilized polymethylmethacrylate �PMMA� particles, dis-
persed in cis-decalin, with short-range attraction induced by
adding a nonadsorbing polymer, polystyrene. The polymer is
excluded from the region between the surfaces of two nearby
particles, thus leading to an excess osmotic pressure attract-
ing the particles together. From the behavior of the samples,
it was found that the line of structural arrest at the high-
density end of the phase diagram has a reentrant phase. This
has also been observed by MCT calculations �23�, MD simu-
lations, and light-scattering experiments, which all suggest
that the qualitatively distinct kinds of glasses are dominated
by repulsion and attraction, respectively.

Polymeric systmes (a) Poly (4-methylpentene-1). A differ-
ent inverse melting material is the polymeric substance
poly�4-methylpentene-1� denoted more simply as P4MP1
�24,25�. This is a semi-crystalline one-component polymeric
system having a crystalline component of nearly 60%. Below
the glass transition temperature �at around room temperature
and atmospheric pressure�, the crystal density of the polymer
is lower than the amorphous phase. Therefore, on compres-
sion, the initially crystalline tetragonal phase loses order and
becomes amorphous above a threshold value of 2 kbar. This
transformation is exothermic in nature, thus suggesting that
the amorphous phase has lower entropy than the crystalline
tetragonal phase. Indeed, a disordering on cooling of the
crystalline phase, that is, inverse melting and crystallization
on heating, was observed. These structural changes have also
been confirmed by other experimental methods. It was ob-
served that the melting curve in the T-P plane possesses a
maximum of the type shown in Fig. 1 by point B and its
neighborhood, i.e., the slope of the inverse melting curve is
positive �type II�. This “solid-state amorphization” is in
agreement with the unusual density relationship below the
glass transition temperature of the polymer. The mechanism
for the inverted transition is the larger amount of conforma-
tions of backbone and side groups of the polymer in the
crystal, which are due to its more open structure, and this
contributes to its overall higher entropy. Similar experimen-
tal results were reported recently in �26�.

(b) Methyl cellulose. An interesting example in polymeric
systems for inverse glass transition is the reversible ther-
mogelation of methyl cellulose solution in water �27�. When
a �soft and transparent� solution of methyl cellulose is heated

�above 55°C, for a 5 gr/ liter solution�, it turns into a white,
turbid, and mechanically strong gel. This transition is revers-
ible, and upon subsequent cooling the polymer is redissolved
again. In its high-temperature phase, methyl cellulose gel
exhibits, like many other gels �28�, glassy features. In this
case, the folded conformation is favored energetically while
its unfolded conformation is favored entropically �see Fig.
2�. The entropy growth of the open conformation may be
related to the number of possible microscopic configurations
of the polymer itself, but it may be attributed also to the
spatial arrangement of the water molecules in its vicinity,
similar to the process suggested before for protein denatur-
ation. The mechanism proposed also for other systems dis-
playing inverse transitions due to the hydrophobic effect �29�
is as follows: In the liquid state, the water molecules are kept
in a highly constrained “cagelike” structure formed by the
hydrophobic constituents which move around in the solution.
However, as the gel is formed, and the hydrophobic seg-
ments cluster together to form cross links, these cages are
opened, and the water molecules move freely around the
network. As a consequence, the number of possible configu-
rations and the entropy of the water molecules �which highly
determines the entropy of the whole system consisting of
99% water� are low in the liquid phase and increase when
hydrophobic aggregates cluster together and form a gel �30�.
The main cause for inverse glass transition is that the “open”
high entropy conformations of the polymer are also the in-
teracting structures, as they allow for the formation of hy-
drophobic links with other polymers in the solution, a pro-
cess that leads to gelation.

(c) Other polymers. Aqueous solutions of the triblock co-
polymer PEO-PPO-PEO �PPO, polypropylene oxide; PEO,
polyethylene oxide� also show inverse melting behavior �31�.
Similar to methyl cellulose, due to the entropic mechanism,

FIG. 2. Sketch of the �conjectured� energy and entropy depen-
dence on the linear size of a methyl cellulose polymer in water. The
folded, noninteracting, conformations are supposed to be energeti-
cally favored �due to interactions between hydrophobic sequences
along single chains� and less entropic �due to limited number of
polymer conformations and/or fewer degrees of freedom for the
water molecules that “cage” the hydrophobic constituents of the
chain�. The unfolded �interacting� conformations are of higher en-
ergy but also admit a larger number of microscopic configurations,
hence they became favored at higher temperatures.
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the PPO block is hydrophobic at high temperatures, and hy-
drophilic at low temperatures. Above a certain concentration
and a specific temperature, the Gaussian chains of these
polymers form micelles. At even higher temperatures, it is
found that the micellar liquid transforms into a stable cubic
�bcc� crystal. In contrast to the methyl cellulose, the transi-
tion is to an ordered solid since the hydrophobic sequences
are deposited at ordered positions along the chain. The en-
tropy change due to crystallization may be small compared
to the entropy change of molecular origin, and this is the
assumed mechanism for the inverse melting transition.

IV. THEORETICAL MODELING

As mentioned above, the Flory-Huggins theory of phase
separation in polymer melts may yield phase separation as
temperature increases. In this theory, however, a
temperature-dependent interaction is included. In this sec-
tion, we try to review several “first principle” models that
exist in the literature. In these models, the ground-state en-
ergy and the excitation spectrum are temperature-
independent, and the inverse transition is attained by apply-
ing the thermodynamic consideration to the given spectrum.

Rochelle salt. Perhaps the first theoretical considerations
that dealt with inverse melting appeared in the context of the
two Curie points for the ferroelectric phase of Rochelle salt
�32�. The model may be presented in the form of a “quan-
tum” pseudospin model, where the Hamiltonian is nondiago-
nal in the z direction �33� and two sublattices are defined
with different local field and interactions. The combined ef-
fect of thermal and quantum tunneling dominates the system
in some temperature range to yield a finite magnetization in
the z direction.

Random heteropolymer in a disordered medium. In a re-
cent model presented by Shakhnovich et al. �34�, a random
heteropolymer in a disordered medium is considered. Here,
as in the flux line crystallization problem �18�, the low en-
ergy, low-entropy state of the polymer involves pinning by
quenched randomness that corresponds to a wandering expo-
nent larger than the 1/2 value associated with thermal wan-
dering, and crystallization is avoided. At larger temperatures,
the impurity pinning may be neglected and the thermally
wandering polymers are free to form a structure based on
their mutual interactions. In the case of random heteropoly-
mers, this structure is glassy, as opposed to the crystalline
structure obtained in the flux line case.

Extended Gaussian core model. In a recent work by
Feeney, Debenedetti, and Stillinger �35�, an extension of the
Gaussian core model has been presented as a model that
includes first-order inverse melting transitions. The particles
of this model are point particles that interact via a Gaussian
repulsive potential, and in the extended model any single
particle may be in one of two internal states, where the
ground state is nondegenerate and the excited state admits
high degeneracy. If the interaction range of the excited states
is shorter than the interaction range of a particle in the
ground state, the effective density of particles decreases as
temperature is increased. This leads to a type II �waterlike�
inverse melting scenario, since the molar volume of the solid

is larger than that of the liquid. On the other hand, if in the
extended model the interaction range for the ground state is
shorter, heating induces larger effective density that yields
the type I inverse melting scenario.

Extended Blume-Capel model. The spin model presented
below contains the basic ingredients of the extended Gauss-
ian core model in a spin system. Its advantage relies on the
simplicity of modeling and solutions, and it gives a unifying
framework to analyze both inverse melting and inverse freez-
ing of type I, type II, first, and second order. Although this
model is not directly related to any of the systems presented
above, it may yield various general insights into the inverse
transitions, as shown in the next sections.

V. SPIN MODEL FOR INVERSE MELTING:
THE ORDERED CASE

A. A model for inverse melting of type I

It has already been explained that, in order for inverse
melting of type I to occur, the more frozen, interacting, state
has to be of higher entropy, i.e., to have more internal con-
figurations, than the liquid noninteracting state. In order to
model this phenomenon in a most simple way, one should
look for the simplest model that incorporates all these fea-
tures. Here we use a modified version of the Blue-Capel
model �3�. The fundamental constituents are spin-1 particles,
and there are two competing interactions: an exchange inter-
action that lowers the energy of the ±1 �interacting� states,
and a “lattice field” that favors the “zero” �noninteracting�
state. For N interacting spins, the Blume-Capel �BC� Hamil-
tonian takes the form

H = − J�
�i,j�

SiSj + D�
i=1

N

Si
2 − h�

i=1

N

Si, �2�

where the spin variables are allowed to assume the values
Si=0, ±1. The summation over �i , j� is over any interacting
pair once and h is the magnetic field applied. The magnetic
field term that breaks the up-down symmetry of the spins has
no direct relevance to the inverse melting and is included
here only for completeness of the discussion and for suscep-
tibility calculations. Nevertheless, the phase diagrams below
will be plotted for h=0.

For positive D, the noninteracting state of a single spin is
lower in energy than the interacting state. For D�qJ �where
q is the number of interacting particles, or “nearest neigh-
bors,” of the model�, the ground state of the Hamiltonian is
the “folded” state, where all spins are zero, i.e., the system is
in its noninteracting phase. For D�qJ, it is favorable for the
system to be in its interacting phase, and at the ground state
all spins are either at the +1 or at the −1 states. At zero
temperature this implies a transition, upon increasing D,
from the ferromagnetic state to the paramagnetic one, and
spontaneous breakdown of the up-down symmetry in the in-
teracting phase. Thus, this model already includes one basic
ingredient of the inverse melting scheme, namely the ener-
getic preference of the noninteracting state.

In order to explain the second constituent essential for our
model, let us use the methyl cellulose analogy �see Fig. 2� as
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an example. If the zero spin state of the BC model represents
schematically the compact noninteracting polymer coil, the
stretched polymer �interacting with its neighbors� is repre-
sented by spin ±1. Clearly there are many possible spatial
configurations in which two polymers may attach to each
other, and correspondingly many degenerate, or almost de-
generate, frozen configurations of the gel; in our schematic
model, this is represented by the degeneracy between plus
and minus states.

The new ingredient that should be added to the classical
BC model in order to yield inverse melting is the entropic
advantage of the interacting states. As a first approximation,
let the 0 spin state be k-fold degenerate, and the ±1 states be
onefold degenerate where r= l /k	1 is the degeneracy ratio
that dictates the entropic advantage. It turns out that all the
results presented here are independent of the absolute degen-
eracies k and l, and depend only on their ratio r. The param-
eter r represents, of course, the more configurations available
for a polymer in its opened �interacting� states relative to the
number of configurations it can obtain in the closed �nonin-
teracting� coil.

The Blume-Capel model, as well as its modification pre-
sented here, may be easily solved in its infinite range limit,
i.e., where there is no spatial structure and any pair of spins
interact with each other. In order to keep the effective field
finite, one replaces the exchange factor in the Hamiltonian J
by J /N. Using standard Gaussian integral techniques, one
finds an expression for the free energy per spin in the infinite
range limit,

�f � �F/N =
�JM2

2
− ln	1 + 2r cosh���JM + h��e−�D
 ,

�3�

where M is the order parameter of the system �magnetization
per spin�, M ���1/N��i=1

N Si�. The phase transition curves are
obtained numerically by solving for the minimum of Eq. �3�
with respect to M, namely the equation

M =
2r sinh���JM + h��

e�D + 2r cosh���JM + h��
�4�

should be solved self-consistently.
Scaling the temperature and D with the interaction

strength J, the phase diagram is shown in Fig. 3. In the inset,
results are presented for the original Blume-Capel model
�i.e., the r=1 case�: the line AB is a second-order regular
transition line, above it is a paramagnetic �M =0� phase, and
below it the system is ferromagnetic �M �0�. Below the tri-
critical point �B�, the phase transition is first order, and the
three lines plotted are the spinodal line of the ferromagnetic
phase BE �above this line the M �0 solution ceases to exist�,
the spinodal line of the paramagnetic phase BC �below this
line M =0 is not a minimum of the free energy�, and the
first-order transition line BD. Along BD, the free energy of
the paramagnetic phase is equal to that of the ferromagnetic
state. Clearly, the Blume-Capel model displays no inverse
melting: an increase of the temperature induces a smaller
order parameter.

The situation is different as r increases, as emphasized by
the main part of Fig. 3. The same phase diagram is presented,
but now r=6, so the interacting states have larger entropy.
The ferromagnetic phase now covers a larger area of the
phase diagram, a fact that reflects its entropic advantage. The
tricritical point is shifted to the left, relative to the point of
infinite slope, leaving a region of second-order inverse melt-
ing, and the orientation of the BD line also changes, estab-
lishing the possibility of first- and second-order inverse melt-
ing. Note that the r=6 transition lines converge to the r=1
lines as T→0, since the entropy has no effect on the free
energy at that limit.

The value of r=6 was chosen only for illustration. In fact,
as soon as r gets larger than 1, inverse melting of first order
is observed. For r=1, i.e., the original Blume-Capel model,
the tricritical point is placed a bit higher than the point of
infinite slope and the BD line curves to the right. However,
as r increases a bit, a small portion of the BD line obtains
negative curvature, thus inserting a small region of first-order
inverse melting. However, the general trend of the first-order
transition line BD is still to the right. The tricritical point
begins to move downward through the AB line and continues
to do so on a further increase of r. It crosses the point of
infinite slope for r�1.1204, and thus for larger values of r,
first- and second-order regions of inverse melting occur as
the tricritical point continues to move downward on the melt-
ing curve to below the point of infinite slope. All in all, it
seems that the original Blume-Capel model, i.e., for r=1, is
exactly “marginal” in the sense of inverse melting.

To allow qualitative comparison of our cartoon model
with experimental results, the appropriate parameters should
be identified. There are three parameters in the model as it
stands: D represents the energetic advantage of the noninter-

FIG. 3. Phase diagram �first-order transition and the spinodal
lines� for the ordered BC model in the D-T plane for r=1 �inset, no
inverse melting� and for r=6 �admits inverse melting, main figure�.
The value of r=6 has been chosen in order for the effect to be more
pronounced, but inverse melting is seen as soon as r�1. AB is the
second-order transition line, where B is the tricritical point. The line
BD is the first-order transition line �the global minimum of the free
energy is shifted from one phase to the other� while the lines BE
and BC are the spinodal lines, where the local minima associated
with one of the phases disappears.
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acting state, r �if larger than 1� is the entropic gain of the
interacting state, and J is the strength of the interaction. In
most of the physical systems that display inverse melting, the
controlled external parameter is the strength of the interac-
tion: pressure �for He3 and He4� or concentration of the in-
teracting objects �for polymeric and colloidal systems and
Rochelle salt–ammonium Rochelle salt mixtures�. As long as
the only effect of the pressure is to increase the strength of
the effective interaction among constituents, it may be mod-
eled by changing J. The resulting phase diagram should be
compared, though, with the T-J plot of our model presented
in Fig. 4 and shows type I, i.e., negative slope, inverse melt-
ing. The decrease of the transition temperature with the in-
crease of interaction strength �pressure� is physically intui-
tive, as larger interaction favors energetically the
ferromagnetic phase. As discussed previously, the slope of
the first-order transition line in the temperature-pressure
plane is required by the corresponding Clausius-Clapeyron
equation �1�.

Inverse melting obtained by this model is analogous to the
type I melting defined above. In type I melting V�s��V�l�,
and one expects a negative slope of the transition line as was
already shown in portion AD of Fig. 1 and here in Fig. 4.
Note that, although the magnetization in magnetic systems is
the extensive parameter and plays the same role as the vol-
ume �the pairs PV and HM appear in the expression for the
free energy�, here M is larger in the solid phase. This is due
to the sign inversion between PdV and H ·dM in the expres-
sion for free energy, which leads to a minus sign in the
Clausius-Clapeyron equation.

B. A model for inverse melting of type II

For the sake of completeness, let us show how to use the
extended Blume-Capel model to obtain type II inverse melt-
ing. There is no need to change the basic model or to add

new physics; a different interpretation of the existing expres-
sion is sufficient.

In “regular” solid-liquid systems, the effect of pressure is
to increase the interaction among constituents by decreasing
the microscopic distance between atoms or molecules. Trans-
lating into the spin model, this implies growth of the ex-
change interaction, and type I melting as in Fig. 4. A simple
way to invert this picture has been suggested recently by �20�
in the context of inverse transitions. Since in waterlike ma-
terials the solid phase is characterized by low-energy, long
chemical bonds between molecules, the microscopic adjust-
ment to this low-energy state increases the volume of the
bulk. Pressure, though, is incorporated into the model by
adding additional energetic “cost” to any low-energy bond,
reducing the effective value of the exchange interaction. The
Hamiltonian becomes

H = − J�
�i,j�

SiSj + D�
i=1

N

Si
2 + P
V�

�i,j�
SiSj , �5�

where 
V is the access volume of the “open” interacting
configurations. Plotting the locus of the phase transition, this
time as a function of pressure, yields the phase diagram
shown in Fig. 5. The slope of the P�T� diagram is shown
positive. This is analogous to raising the energetic cost of the
interacting state to a state where Jeff=J− P
V. Therefore, for
higher values of P, higher temperatures are needed to induce
the inverted transition.

C. Response functions

To complete the picture, let us calculate the values of
some thermodynamic quantities that characterize the transi-
tions in the first version of the model. The heat capacity,
given by

FIG. 4. First-order transition line �DBA� and spinodal lines �BC
and BE� for the ordered BC model Eq. �3� in the T-J plane for
r=6. First- �BD� and second- �BA� order inverse melting of the first
type are observed and the slope of the curve is negative.

FIG. 5. Phase diagram, transition, and spinodal lines for the
modified ordered model �see Eq. �5�� that shows second type in-
verse transition for r=6. The slope of the inverse melting curve is
positive this time as the interaction energy increases with the
pressure.
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CH = 2rkB�2 exp��D��2rJ2M2 − 2DJM sinh���JM + h�� + �D2 + J2M2�cosh���JM + h��
	exp��D� + 2r cosh���JM + h��
2  . �6�

In Fig. 6, the heat capacity as a function of temperature is
shown for different values of D /J �i.e., along vertical sec-
tions of the phase diagram �3��. For small D /J, where there
is no inverted phase transition �demonstrated in the figure by
D /J=0.3�, the heat capacity shows only a monotonic in-
crease to a maximum followed by a decrease as expected by
thermal changes. In the point of second-order �normal� melt-
ing, the slope changes suddenly. Since the model is globally
coupled, there is no meaning to the correlation length and
domain size and, therefore, the diverging heat capacity asso-
ciated with second-order transitions is avoided. For higher
values of D /J �shown for D /J=0.8�, as the first-order in-
verse transition sets in, there is a discontinuity of the heat
capacity. Following this is an increase, then a decrease, of
the heat capacity with the temperature and again an abrupt
change of the slope when the second-order melting occurs.
Second-order inverse melting �as obtained for D /J=1.2� also
shows an abrupt change in the derivative of the specific heat
at the transitions �not easily seen in the figure at T=0.5 and
T=0.75�. For higher values of D /J, there are no phase tran-
sitions so the heat capacity is a monotonic function.

The susceptibility as a function of temperature is given by

� = � 2r sinh2 ��JM�2

�M2�2r + exp��D�cosh��JM��
− J−1

�7�

and several vertical cuts are shown in Fig. 7. First-order in-
verse melting yields a small discontinuity in the susceptibil-
ity, as seen more clearly in the inset for D /J=0.8. However,
all second-order transitions in the system, including the in-

verted ones, give diverging values of the susceptibility at the
transitions, as expected.

VI. SPIN MODEL FOR INVERSE FREEZING

A. Model system and the replica trick

As already explained in the Introduction, inverse freezing
is the �reversible� appearance of glassy features in a system
upon raising the temperature. This may be incorporated in
our spin model by introducing random coupling Jij, as in the
standard spin-glass models �36�. The random-exchange gen-
eralization of the Hamiltonian �2� is

H = �
�i,j�

JijSiSj + D�
i=1

N

Si
2 − h�

i=1

N

Si, �8�

where the exchange interaction between the i and the j spin
is taken at random from some predetermined distribution.
Following the paradigmatic Sherrington-Kirkpatrick �SK�
analysis �36� of the infinite-range spin glass, we assume
Gaussian distribution of the exchange term,

P�Jij� =� N

2�J2 exp − �N�Jij −
J0

N
2

2J2 � , �9�

where J0 /N is the mean of the distribution and J /�N is its
width. The replica trick is then implemented to get the free
energy at the large-N limit.

The case r=1, namely the random exchange version of
the Blume-Capel model, was first introduced and discussed

FIG. 6. Heat capacity as a function of the scaled temperature
T /J for the ordered model �see Eq. �3�� for different values of D /J.
First-order inverse melting shows a jump in the heat capacity while
second-order transitions show a discontinuity in the derivative of
the heat capacity.

FIG. 7. Susceptibility as a function of the scaled temperature
T /J for different values of D /J. First-order inverse melting shows a
discontinuity in the susceptibility �see an enlargement in the inset�,
while at the second-order transition point the susceptibility
diverges.
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by Ghatak and Sherrington �GS� �37�, who used a symmetric
replica to obtain the relevant phase diagram. The same model
was considered also by Mottishaw and Sherirington �38� and
by da Costa et al. �39�, although their results are not always
compatible. Recently, the full replica symmetry breaking
analysis has been implemented for the GS model �40�, and
the results actually show a narrow region of inverse melting.
Here we present a replica symmetric analysis of the same
Hamiltonian where the interacting states are highly degener-
ate, i.e., r�1. We obtain the phase transition and the spin-
odal lines, and the results support, again, both first- and
second-order inverse glass transition. The generalization of
the replica symmetry breaking technique to both the Blume-
Capel and the Blume-Emery-Griffith models has already
been carried out by �41�, and this is used in the following to
obtain the one-step RSB results.

The replica technique �43� relies on the identity

ln�Z� = lim
n→0

1

n
�Zn − 1� , �10�

where Z is the partition function of the system and Zn is
interpreted as the partition function of an n-fold replicated
system Si→Sia ,a=1, . . . ,n. The average free energy per spin
may be computed using

�f = − lim
n→0

1

Nn
�Zn − 1� . �11�

The disorder average is taken for Zn using the Gaussian dis-
tribution �9� and yields

Zn = Tr	Si,a
 exp��2J2

2N
�
a�b

��
i

SiaSib2
+

�2J2

4N
�

a
��

i

Sia
2 2

− �D�
a

�
i

Sia
2 +

�J0

2N
�

a
��

i

Sia2
+ �h�

a
�

i

Sia� ,

�12�

where a ,b=1, . . . ,n are the replica indices. Implementing
the Hubbard-Stratanovitch identity yields the free energy per
spin,

− �f = − �
F

N
= lim

n→0

1

n�−
�2J2

2 �
a�b

qab
2 −

�2J2

4 �
a

qaa
2

−
�J0

2 �
a

Ma
2 + ln TreL̂� , �13�

where

L̂ = �2J2 �
a�b

qabSaSb +
�2J2

2 �
a

qaaSa
2 − �D�

a

Sa
2

+ �J0�
a

MaSa + �h�
a

Sa �14�

with Ma the magnetization in each replica and qaa ,qab are the
diagonal and the off-diagonal entries of the “order parameter
matrix.” All these quantities are given self-consistently by
the saddle-point conditions,

Ma = �Sa�, qaa = �Sa
2�, qab = �SaSb� �15�

as �¯� stands for thermal average over the effective Hamil-

tonian L̂.

B. Replica symmetric solution

In order to solve this model, it is necessary to make as-
sumptions on the order-parameter matrix elements qab. In
order to get a general qualitative picture of the phase diagram
of the system, we first make the simplest ansatz, which is
symmetric with respect to permutations of any pair of the
replicas: ma=m, qaa= p, ∀ a, and qab=q, ∀ a�b. Using this
replica symmetric assumption, one obtains

− �f rs =
�2J2

4
�q2 − p2� −

�J0

2
M2

+
1

�2�
�

−�

�

dz exp�−
z2

2
ln	1 + 2re cosh��H̃�z��


�16�

with

H̃�z� = J�qz + J0M + h �17�

and

 =
�2J2

2
�p − q� − �D . �18�

Extremizing the free energy with respect to q, p, and M, one
gets the following set of coupled equations:

q = �
−�

� dz exp�−
z2

2


�2�
� 2re sinh��H̃�z��

1 + 2re cosh��H̃�z��
�2

, �19�

p = �
−�

� dz exp�−
z2

2


�2�

2re cosh��H̃�z��

1 + 2re cosh��H̃�z��
, �20�

M = �
−�

� dz exp�−
z2

2


�2�

2re sinh��H̃�z��

1 + 2re cosh��H̃�z��
. �21�

The coupled equations �19�–�21� are solved numerically
�with the possibility of multiple solutions if more than one
stable state exists�. In the limit where h→0 and J0→0, the
last equation vanishes. We will solve the equations in that
limit and then determine the location of the first-order tran-
sition line by comparison of the free-energy values �plugging
q and p into Eq. �16��, a procedure that ensures the continu-
ity of the free energy at the transition. The resulting phase
diagram is shown in Fig. 8 for the case r=6, and displays all
the essential features that exist in the ordered model, includ-
ing inverse freezing of first and second order, a tricritical
point, and spinodal lines.

The susceptibility of the glassy model is given by
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� = ��p − q� �22�

and shown in Fig. 9. For low values of D /J �D /J=0.3�
where there is no inverse freezing transition, the susceptibil-
ity is a continuous function and only shows a cusp in the spin
glass transition. However, as the inverse glass transition sets
in as a first-order transition, the susceptibility shows a dis-
continuity as shown for D /J=1.2, and when it is second

order, the susceptibility consists of another cusp, similar to
the normal transition.

The internal energy of the system is given by

U =
�J2

2
�q2 − p2� + Dp − �h +

J0M

2
M . �23�

From the internal energy, the heat capacity at a constant
magnetic field is calculated, as seen from Fig. 10.

C. Replica symmetry breaking

It is well known that the replica symmetric solution suf-
fers from several problems, associated with ergodicity break-
ing in the glassy state of matter, and that better and better
solutions are obtained by more steps in the replica symmetry
breaking procedure �44�. Here we briefly discuss the one-
step replica symmetry breaking �1RSB� and comment about
the full RSB in order to clarify, in the next section, the basic
features associated with the degeneracy and inverse freezing.

One-step RSB involves the division of the off-diagonal
elements of the n�n matrix of qab into n /m blocks contain-
ing m replicas each. Different replicas in the same block
have overlap q1 while those in different blocks have overlap
q0.

Thus, the 1RSB free energy is given by

− �f1RSB =
�2J2

4
�m�q0

2 − q1
2� + q1

2 − p2� −
�J0M2

2
+

1

m�2�

��
−�

�

dz exp�−
z2

2
ln� 1

�2�
�

−�

�

d� exp�−
�2

2


�„	1 + 2re cosh��H̃�z,���
…m� , �24�

where

 =
�2J2

2
�p − q1� − �D �25�

and

FIG. 8. Phase diagram, transition, and spinodal lines for the
disordered model �see Eq. �13�� in the D-T plane for constant inter-
action J and degeneracy r=6. The line ABD is a �normal and in-
verted� glass-transition line. To its left the spin glass phase admits a
global minimum of the free energy �technically q�0�, while to its
right the paramagnetic phase corresponds to that minimum �q=0�.
AB is a second-order transition line and BD is a first-order transi-
tion line. BE and BC are the spinodal of the spin glass and of the
paramagnetic phase, respectively.

FIG. 9. Susceptibility as a function of the scaled temperature
T /J for the glassy model for different values of D /J. First-order
inverse melting shows an abrupt jump in the susceptibility while
cusps are seen for all of the spin glass second-order transitions �as
seen more clearly in the inset�.

FIG. 10. Heat capacity as a function of the scaled temperature
T /J for the glassy model for different values of D /J. The disconti-
nuities in the derivative of the heat capacity, associated with the
second-order transitions, are shown clearly in the inset.
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H̃�z,�� = J��q1 − q0�� + J�q0z + J0M + h . �26�

As usual in spin glass theory, we have to maximize the
free energy as a function of q1, q0, p, m, and M, and the
saddle point equations are

q1 = �
−�

� dz exp�−
z2

2


�2�
�� 2re sinh��H̃�z,���

1 + 2re cosh��H̃�z,���
�2�

A

,

�27�

q0 = �
−�

� dz exp�−
z2

2


�2�
�� 2re sinh��H̃�z,���

1 + 2re cosh��H̃�z,���
�

A

�2

,

�28�

p = �
−�

� dz exp�−
z2

2


�2�
� 2re cosh��H̃�z,���

1 + 2re cosh��H̃�z,���
�

A

,

�29�

M = �
−�

� dz exp�−
z2

2


�2�
� 2re sinh��H̃�z,���

1 + 2re cosh��H̃�z,���
�

A

.

�30�

The size of the inner blocks, m, satisfies

�J2

4
�q1

2 − q0
2� +

1

�m2�
−�

� dz exp�−
z2

2


�2�
ln� 1

�2�
�

−�

�

d�

�exp�−
�2

2
Am� −

1

�m
�

−�

� dz exp�−
z2

2


�2�

��ln	1 + 2re cosh��H̃�z,���
�A = 0. �31�

All these expressions need the definitions

A�z,�� = 1 + 2re cosh��H̃�z,��� �32�

and

�X�A =

�
−�

�

d� exp�−
�2

2
XAm

�
−�

�

d� exp�−
�2

2
Am

, �33�

where q1�q0 and all parameters are in the region �0,1�. The
numerical solutions are now obtained by either maximizing
the free energy or by solving the coupled system of saddle
point equations �27�–�31�. The resulting phase diagram is
shown in Fig. 11. In the resulting phase diagram, although
the phase-transition line is shifted a little to the right, the

essential features of inverse melting remain the same. The
effect of replica symmetry breaking on q1 is small, similar to
the SK model and other previously discussed models �41�.

This result is anticipated also from the following physical
intuition based on qualitative comparison to the ordered
model. The main difference, in the context of inverse melt-
ing, of the disordered model from the ordered one is the
advantage of the “frozen” state being less pronounced. Thus,
although frustration yields less effective freezing than in the
ordered model, and therefore the free energy of the glass is
higher, still the interplay between the energy and entropy
terms as a function of the temperature remains the same.
Therefore, the qualitative picture of the glassy system also,
to any order of replica symmetry breaking, should not be
altered. In addition, quantitatively, the ABC line that marks
the spinodal of the q=0 phase is unaffected by the need to
break the replica symmetry. Since the points C, D, and E are
r-independent �at T=0 there is no effect of entropy�, one can
choose always a large enough r �like the one presented in the
figure� in order to ensure that some sort of inverse melting
takes place, independent of the degree of the symmetry
breaking calculations.

Let us comment, now, on the full replica symmetry break-
ing �FRSB� for this model. The FRSB involves an infinite
process of blocks within blocks, with an order parameter
q�x�, x� �0,1� �36,42�. It is easy to see that, to any order in
the RSB process, the parameter  in Eq. �34� involves only
the inner q, i.e., the order parameter associated with the
smallest blocks. As a result, the FRSB is

 =
�2J2

2
�p − q�x = 1�� − �D , �34�

where q�x=1� is the Edwards-Anderson order parameter
�qEA� of the glassy model �36�. This simple observation will
be useful in the next section, when the results of a lift of the
r times degeneracy are discussed.

FIG. 11. First-order transition lines, separating regions of global
stability for the glassy/paramagnetic phase, as obtained from the
one-step RSB �dashed line� compared with the symmetric replica
results �full line�. The first-order transition is shifted to the right, but
there is still a region of inverse glass transition.
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VII. DENSITY OF STATES AND FLORY-HUGGINS SERIES

The reader may have already noticed that the only effect
of the addition of r times degeneracy to the �ordered or
glassy� Blume-Capel model is the simple relation

exp�− �D� → r exp�− �D� , �35�

i.e., one can solve the original model with the temperature-
dependent rescaling of D,

D → D − T ln r . �36�

This is not an incident or an artifact of an approximation
�infinite range model, replica trick� but an exact result. In
fact, for any microscopic configuration of the spin system
there is an excess entropy �S associated with the r times
degeneracy of any “open” spin, i.e.,

�S = r�iSi
2
. �37�

Correspondingly, the free energy E−TS of an r times degen-
erate Blume-Capel model is equivalent to the free energy of
the original, nondegenerate, BC model with the rescaling
given by Eq. �36�.

A very similar argument has been used by Flory and Hug-
gins in their discussion of miscibility of polymer melts �4,5�.
In the Flory-Huggins theory, if the filling fraction of one
polymer is � �and, accordingly, the fraction of the other
polymer is �1−���, the free energy of the system is written
as

�f = � ln��� + �1 − ��ln�1 − �� + ���1 − �� . �38�

While the first two terms measure the entropy associated
with the mixture, the last term stands for the energy associ-
ated with the blend. The Flory-Huggins � parameter, how-
ever, depends on temperature,

� = A +
B

T
+

C

T2 , �39�

where the constants A, B, and C are determined experimen-
tally. Clearly, only the constant B is a “real” interaction pa-
rameter, as it does not depend on the temperature. The other,
temperature-dependent constants reflect the “residual en-
tropy” associated with the interaction between polymers; for
example, if a polymer of one species tends to take a more
compact shape when it is surrounded by polymers of the
opposite species, the corresponding contribution to the en-
tropy is not included in the first two terms of Eq. �38�, but in
one of the T-dependent factors A or C.

One may easily identify the shift D→D−T ln�r� with the
A parameter of the Flory-Huggins series, so this contribution
comes from an exact degeneracy of states. In terms of the
modified Blume-Capel model, one recognizes the other pa-
rameter, C, as related to the finite width of the density-of-
states distribution maxima. What happens if the degeneracy
of the r “open” states is not exact? In order to consider this
problem, let us assume that there are r interacting states in an
interval of width � centered at S= ±1. The case �=0 corre-
sponds to the exact degeneracy as before, and we are inter-
ested in the corrections to the effective Hamiltonian for a
small interval width.

We begin with numerical examples. In Fig. 12, the phase
diagram is shown, for the “almost degenerate” Blume-Capel
model, with �=1 for different values of r. As expected,
higher values of r imply more pronounced inverse melting
phenomena and an increase of the ferromagnetic region,
since the “active” spin state is favored by entropy. Of course,
all the lines meet at the same point for T=0, where entropy
has no effect on the state of the system.

In Fig. 13, on the other hand, r is kept constant while �
changes from zero �degenerate BC model� to 1.4. The in-
verse melting manifestation is stronger for the degenerate
case and weakened as � increases. Interestingly, all curves
cross at two points in the D-T plane: one is the point at T

FIG. 12. Phase diagram for the mean-field version of the or-
dered model in the D-T plane. Here there is no exact degeneracy of
the “interacting” states. Instead, r spin states are equally distributed
around the ±1 state, with level spacing � /r, as explained in the text.
The first-order transition lines are plotted for different r’s, i.e., for
different “density” of spin states inside a window of size �. As seen
in the figure, larger density of spin states corresponds to more pro-
nounced inverse melting.

FIG. 13. The same as Fig. 12, but with a constant number of
spin levels �r=7� for different widths � around S=1. Again, a larger
density of spin �hence energy� states implies inverse melting. The
occurrence of two common points for all curves is discussed in the
text.
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=0, where only energetic consideration is important and the
system crosses from the zero spin state to the maximal spin
state. As the temperature increases, the phase transition in-
volves finite populations of other �not maximal� spin states,
in order to increase the entropy of the ferromagnet. At the
point where �below the transition� all active spin states are
equally populated, there is no significance of the value of �,
and all curves converge again at the same point.

Before making an explicit theoretical consideration, let us
make a distinction between one particle and interaction de-
generacies. If a small perturbation lifts the r-fold degeneracy
of the spin, it may come from one of two sources, namely, an
intrinsic, “one-particle” splitting �e.g., the polymer in its
open conformation admits many spatial configuration, each
of them with slightly different energy� and an interaction
splitting �e.g., the energetic differences between various con-
formations of a single polymer are negligible, but the split-
ting is induced by the different energies associated with the
relative conformations of two interacting polymers�. In our
Blume-Capel Hamiltonian, the first, single-particle situation
implies a degenerate exchange term while the second, inter-
acting situation corresponds to a degenerate lattice splitting
term.

Let us consider the single-particle situation. Here one
should replace any trace on internal single-spin degrees of
freedom by the summation

�
k=−r/2

r/2

exp�− �D�1 + k
�

r
2� �

r

�
�

−�/2

�/2

e−�D�1 + x�2
dx .

�40�

This integral yields some error function, but we are inter-
ested in the small � corrections to Eq. �36�. To order �2,
these are

D → D +
D�2

12
− T ln r −

D2�2

6T
. �41�

These corrections are to be identified with the Flory-Huggins
constants, i.e., as long as the energy associated with the finite
width of the density of states maxima, �D�, is smaller than
the thermal energy kBT and one writes the Flory-Huggins �
parameter as an infinite series in inverse powers of T, where
the actual parametrization of Flory and Huggins corresponds
to the first three terms in this series. As long as the main
contribution to the splitting in the DOS maxima comes from
a single particle, this argument is applicable to the ordered
system, as well as the disordered one, and to all orders in the
replica symmetry breaking procedure.

The situation changes when the splitting comes from dif-
ferent exchange interactions associated with various micro-
scopic conformations of the “open” states. Here one should
make a distinction between the ordered and the disordered
states, and a possibility of deviations from a Flory-Huggins-
like series.

The simplest case is the ordered one, where now the trace
over single-particle states involves the summation

�
k=−r/2

r/2

cosh��JM�1 + k
�

r
� �

r

�
�

−�/2

�/2

cosh��J�1 + x��dx .

�42�

Preforming the integration and expanding the result for small
�, one finds, to the leading order in �, the rescaling of D,

D → D − T ln r −
J2M2�2

24T
. �43�

Notice that the small parameter in the series is the relation
between the energy splitting due to the effective field, JM�,
and the energy of temperature fluctuations kBT. As long as
the system is paramagnetic, i.e., the order parameter M van-
ishes, there is no effect of this type of splitting at all. Accord-
ingly, the exchange splitting has no effect on the location of
the second-order transition line and the paramagnetic spin-
odal line where the order parameters disappear.

It is important to note the difference, for interaction split-
ting, between the ordered and the disordered case. Looking
at the replica symmetric solution where the trace over single
spin configurations is taken, Eqs. �14�–�16�, one clearly rec-
ognizes another term that contributes to the rescaling of D,
even in the paramagnetic phase: this is the term

exp��2J2�p − q�
2 � S2

in Eq. �14� that, for q=0, yields the following corrections:

D → D − T ln r +
J2�2p

12T
�1 −

2J2p2

T2  . �44�

This result, again, holds for any order in the replica symme-
try breaking series as long as none of the q�x� parameters
differ from zero �see Eq. �34��. Moreover, even if the glass
order parameter takes finite value, and to any order in the
RSB process, the only change in this expression is the re-
placement of p by p−qEA, as explained in the previous sec-
tion.

The intuition beyond this result is simple: in the ordered,
infinite-range interaction Blume-Capel model there is no lo-
cal field from the exchange interaction on a spin as long as
the system is in its paramagnetic state. In the disordered
system, on the other hand, clusters of spins are formed, even
above the transition. While below the transition these clus-
ters are frozen, above the transition they oscillate coherently
at long times, so the q parameters remain zero, but the spins
tend to be in the interacting state instead of at the zero state.
As a result, the parameter p that measures the tendency of a
spin to be in the interacting state takes finite values even
above the transition, and there is a corresponding local field,
J��p�, that “pushes” the spin out of the zero state to either
the plus or the minus state. The new measure for the degen-
eracy is the ratio between this local field splitting, J��p��,
and the temperature smearing. Turning to the polymer anal-
ogy, even before the gelation where the system is not yet
frozen, one expects the polymers to have a tendency for the
open conformation. At this stage, the free energy of the sys-
tem is affected by tiny differences in the interpolymer inter-
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actions associated with different spatial conformations, al-
though there is no global freezing �45�. As p itself is
temperature-dependent, deviations from Flory-Huggins be-
havior are expected �46� and noninteger powers appear in the
inverse temperature series.

VIII. CONCLUDING REMARKS

There is a difference between the “objective” thermody-
namic definition about order and the subjective perception of
this concept. The objective measure for order and disorder is
the entropy of the system. For an unbounded system, this
quantity monotonically increases with temperature, giving
rise to the definition of temperature as a measure of the dis-
order and fluctuations in the system.

Subjectively, however, one associates order with crystal-
line structure, frozen molecules, or phase separation. These
features may be only part of the global pictures, leading to
the concept of larger “order parameter” as temperature in-
creases. As reviewed in this paper, this situation happens in
many physical systems, and then one speaks about inverse
melting or inverse freezing.

We believe that the basic ingredients that appear in the
“minimal” model presented here, namely a degenerate, en-
tropically favored interacting state and energetically favored
noninteracting state, appear in almost all the physical sys-

tems that show inverse melting or inverse freezing. The de-
generate Blume-Capel model presented here, along with its
random exchange generalization, supplies a basic framework
within which some of the basic qualitative features of all
these systems are demonstrated.

In a generic system, an exact degeneracy of the density of
states never occurs, there is only a peak in the density of
states, corresponding to almost degenerate microscopic
states. As shown here, there is a distinction between a
“single-particle” �almost� degeneracy, like the one associated
with various conformations of a polymer, and a “many-
body” entropically favored states. In the first case, a Flory-
Huggins-like theory may be constructed, with an effective
parameter �corresponding to the � parameter of the polymer
blends theory� that reflects the effect of the entropy. In the
second case, this Flory-Huggins-like description fails, but the
entropy has no effect in the “disordered” �paramagnetic�
phase.
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